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Abstract 16 

 17 

Soil moisture is a key variable for drought monitoring but soil moisture measurements 18 

networks are very scarce. Land-surface models can provide a valuable alternative to 19 

simulate soil moisture dynamics, but only a few countries have such modelling schemes 20 

implemented for monitoring soil moisture at high spatial resolution. In this study, a soil 21 

moisture accounting model (SMA) was regionalized over the Iberian Peninsula, taking as 22 

a reference the soil moisture simulated by a high-resolution land surface model. To 23 

estimate soil water holding capacity, the parameter required to run the SMA model, two 24 

approaches were compared: the direct estimation from European soil maps using 25 

pedotransfer functions, or an indirect estimation by a Machine Learning approach, 26 

Random Forests, using as predictors altitude, temperature, precipitation, 27 

evapotranspiration and land use. Results showed that the Random Forest model 28 

estimates are more robust, especially for estimating low soil moisture levels. 29 

Consequently, the proposed approach can provide an efficient way to simulate daily soil 30 

moisture and therefore monitor soil moisture droughts, in contexts where high-resolution 31 

soil maps are not available, as it relies on a set of covariates that can be reliably estimated 32 

from global databases. 33 

 34 
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1. Introduction 41 

 42 

Soil moisture droughts have strong impacts on vegetation and agricultural production 43 

(Raymond et al., 2019; Tramblay et al., 2020; Vicente-Serrano et al., 2014; Pena-Gallardo 44 

et al., 2019). There is a growing interest for simple indicators to monitor drought events 45 

at short timescales that could be related to impacts (Li et al., 2020; Noguera et al., 2021). 46 

In particular, soil moisture indicators could be more relevant than climatic ones to monitor 47 

potential impacts of droughts on agriculture and natural vegetation (Piedallu et al., 2013). 48 

Since actual soil moisture measurements remain very scarce, soil moisture simulated 49 

from land-surface models are an interesting proxy to develop simplified methodologies 50 

that could be applied on data-sparse regions. Land-surface models (LSM) are valuable 51 

tools for a fine scale monitoring of drought events; however, their implementation requires 52 

accurate forcing data and computational resources (Almendra-Martín et al., 2021; 53 

Quintana-Seguí et al., 2019; Barella-Ortiz and Quintana-Seguí, 2019). Global 54 

implementation also exists but with a coarser resolution and driven by reanalysis data 55 

(Rodell et al., 2004; Muñoz Sabater, 2020) that may not be adequate for local-scale 56 

applications. Only very few countries have land-surface schemes implemented at the 57 

national level to monitor droughts (Habets et al., 2008).  58 

 59 

Remote Sensing is another option which allows monitoring soil moisture (Dorigo et al., 60 

2017; Brocca et al., 2019). Microwave sensors allow monitoring of surface soil moisture 61 

(first 5 cm for L-band based products, skin for C-band based products), without the 62 

interference of clouds. However, surface soil moisture is not enough for most applications, 63 

which require root zone soil moisture, which is the water resource in the soil available to 64 

plants. Furthermore, passive L-band products, such as SMOS (Martínez-Fernández et 65 

al., 2016) or SMAP (Mishra et al., 2017), have a low resolution and active C-band 66 

products, such as Sentinel 1 (Bauer-Marschallinger et al., 2019), which have higher 67 

resolution, suffer from higher noise and are more sensitive to vegetation. Thus, even 68 

though remote sensing is very useful, it still has problems to be surmounted. The 69 

resolution of passive L-band products can be increased using optical data (NDVI, LST), 70 

by means of downscaling algorithms (Merlin et al., 2013; Fang et al., 2021), but then the 71 

resulting product is sensitive to cloud cover. Also, some progress has been made in 72 

deriving root zone soil moisture from surface soil moisture estimations using an 73 

exponential filter (Stefan et al., 2021) calibrated using the SURFEX LSM (Masson et al., 74 

2013), but these products are in early stages and are not operational yet. 75 

 76 

Simplified methodologies to estimate and monitor the status of soil moisture, are needed 77 

in contexts where LSM data is not available and where remote sensing products fall short, 78 

such as areas and time periods with dense vegetation, or high soil roughness which may 79 

affect their accuracy (Escorihuela and Quintana-Seguí, 2016). Different modelling 80 
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approaches have been proposed, either with conceptual soil moisture accounting models 81 

or computational variants of the antecedent precipitation index (Willgoose and Perera, 82 

2001; Javelle et al., 2010; Brocca et al., 2014; Zhao et al., 2019; Li et al., 2020). The 83 

general availability of spatial estimates of soil moisture content would help introduce soil 84 

moisture in drought monitoring systems, improving their scope and usefulness. 85 

Furthermore, this would also facilitate the creation of long-term reanalysis, based on 86 

meteorological forcing data, and future climate change studies, without the need of 87 

running LSM models. However, to apply this type of models at regional or national scale, 88 

there is a need to estimate their parameters over the area of interest. For that purpose, 89 

regionalization methods have been employed in hydrology for decades to estimate the 90 

parameters of hydrological models in ungauged basins (Blöschl and Sivapalan, 1995; He 91 

et al., 2011; Hrachowitz et al., 2013). Several methods exist, based either on catchment 92 

similarity or the direct estimation of model parameters using regression techniques with 93 

physiographic attributes. For soil moisture modelling, up to now only very few studies 94 

have considered these approaches to apply soil moisture accounting models at ungauged 95 

locations (Grillakis et al., 2021) or estimate root zone soil moisture using machine learning 96 

methods (Carranza et al., 2021). 97 

 98 

The goal of the present study is to regionalize (ie. to estimate from surrogate data without 99 

calibration) the soil water holding capacity that is the sole parameter required in a simple 100 

soil moisture model to monitor soil moisture droughts. Two different approaches are 101 

compared: the direct estimation of the soil water holding capacity with soil maps or an 102 

estimation with machine learning techniques, namely Random Forests. 103 

 104 

2. Study area and Data 105 

 106 

The study area of this work is the Iberian Peninsula, which is located between the 107 

Mediterranean Sea and the Atlantic Ocean and thus is influenced by both synoptic scale 108 

systems, that often come from the Atlantic side, and mesoscale heavy precipitation 109 

events, that often come from the Mediterranean side. The Iberian Peninsula presents a 110 

marked relief, with a large and high central plateau and different mountain ranges, which 111 

heavily influence the spatial patterns of precipitation, enhancing it windward and 112 

decreasing it leeward, generating areas of high precipitation on the west, north-west and 113 

north, and very dry areas on the central plains and, specially, on the South-east, as a 114 

consequence the Iberian Peninsula has a heterogeneous distribution of average annual 115 

rainfall, with values ranging from 2000 mm/y to less than 100 mm/y. All this has a strong 116 

influence on the spatial and temporal variability of soil moisture and soil moisture regimes, 117 

having wet regimes on the west and north, where the soil is hardly stressed and, and 118 

semi-arid areas elsewhere, with a wet (energy limited) and a dry (water limited) season, 119 
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with a dry down that might be interrupted by convective events. All this makes the 120 

modelling of soil moisture in Iberian a rather challenging task. 121 

 122 

Daily precipitation, temperature and evapotranspiration were retrieved from the SAFRAN-123 

Spain database (Quintana-Seguí et al., 2017). SAFRAN (Durand et al., 1993) is a 124 

meteorological reanalysis that produces gridded datasets by combining the outputs of a 125 

meteorological model and all available observations using an optimal interpolation 126 

algorithm. It has been implemented over France (Quintana-Seguí et al., 2008) and 127 

recently over the Iberian Peninsula (Quintana-Seguí et al., 2017) with a 5kmx5km spatial 128 

resolution. The SAFRAN dataset used in this study not only includes observations from 129 

the Spanish part of the Iberian Peninsula, it has also ingested data from Portugal. The 130 

SURFEX LSM (Masson et al., 2013) has been run using SAFRAN-Spain as the 131 

meteorological forcing dataset and on the same grid, as it was done in Quintana-Seguí 132 

et al., (2020). SURFEX uses the ECOCLIMAP2 (Faroux et al., 2013) physiographic 133 

database and it uses the ISBA (Interaction Sol-Biosphère-Atmosphère) scheme (Noilhan 134 

and Mahfouf, 1996) for natural surfaces. ISBA has different options; we have used ISBA-135 

DIF, the multi-layer diffusion version (Boone 2000; Habets et al. 2003). From this 136 

simulation, we have extracted the soil moisture of the first 60 cm of the soil, by performing 137 

the weighted average of the soil layers that fall within this range. This simulated soil 138 

moisture over the Iberian Peninsula is considered herein as the observed reference, in 139 

the absence of dense monitoring networks of soil moisture (Martínez-Fernández et al., 140 

2015). From the ECOCLIMAP2 database, elevation and land cover data have also been 141 

retrieved and aggregated in the following nine categories:  water, bare, ice/snow, urban, 142 

forest, grass, dry crops, irrigated crops, wetlands.  143 

 144 

We use the European Soil database (ESDB) produced by the European Soil Data Centre 145 

(Panagos et al., 2012). The ESDB contains information on soil characteristics, including 146 

soil depth and texture for topsoil (0-30cm) and subsoil (30-70cm) layers at a grid 147 

resolution of 1 km. The total available water content (TAWC) is a volumetric parameter 148 

describing the water content between field capacity and permanent wilting point, as a 149 

function of available water content, presence of coarse fragments and depth (Reynolds 150 

et al., 2000). In ESDB, water content at field capacity and permanent wilting point were 151 

determined following the equation from (van Genuchten, 1980) to estimate the soil water 152 

retention curve (Hiederer, 2013). The parameters of the equation are provided by a 153 

pedotransfer function (Wösten et al., 1999) for volumetric soil water content computed 154 

from the soil water retention curve. The pedotransfer function uses soil texture, organic 155 

carbon content and bulk density to determine the parameters of the soil water retention 156 

curve (Hiederer, 2013). In the present work, the TAWC of subsoil and topsoil layers have 157 

been added and averaged at the scale of 5km x 5km, matching the spatial resolution of 158 
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the SAFRAN grid. Then, these estimates have been used to set the A parameter of the 159 

SMA model. 160 

 161 

3. Methods 162 

 163 

3.1 Soil moisture accounting model 164 

 165 

We use a soil moisture accounting model (SMA) driven by precipitation and PET, with 166 

one single parameter A, representing the soil water holding capacity. The soil moisture 167 

model considered here has been previously applied in several studies for applications 168 

related to soil moisture monitoring (Anctil et al., 2004; Javelle et al., 2010; Tramblay et 169 

al., 2012, 2014), it consists in the SMA part of the GR4J model  (Perrin et al., 2003). The 170 

output of the model is daily normalized soil moisture, allowing to detect the days close to 171 

saturation (1) or to complete soil moisture depletion (0).  172 

 173 

The SMA model is calibrated using soil moisture simulated with SURFEX covering the 174 

full Iberian Peninsula domain. The Nelder-Mead simplex algorithm is used for the 175 

calibration with the Nash efficiency criterion. The outputs of SURFEX soil moisture are 176 

first normalized with the maximum and minimum values prior to the calibration to compute 177 

the SWI consistent with the SMA model output. To regionally estimate the values of A, 178 

two different methods are compared: the direct estimation of A with TAWC from ESDB 179 

soil maps or its indirect estimation with machine learning methods, namely Random 180 

Forests using 5kmx5km grid physiographic properties. 181 

 182 

3.2 Random forests for regionalization of soil water holding capacity 183 

 184 

Random Forests (Breiman, 2001) belong to the class of Machine Learning techniques. 185 

RF are based on a bootstrap aggregation (Breiman, 1996) of Classification and 186 

Regression Trees (Breiman et al., 2017). It generates a bootstrap sample from the original 187 

data and trains a tree model using this sample. The procedure is repeated many times 188 

and the bagging's prediction is the average of the predictions. Among the many 189 

advantages of RF, they are fast, non-parametric, robust to noise in the predictor variables, 190 

able to capture nonlinear dependencies between predictors and dependent variables and 191 

they can simultaneously incorporate continuous and categorical variables (Tyralis et al., 192 

2019). The drawbacks are they are complex to interpret and they cannot extrapolate 193 

outside the training range. Given their advantages, this algorithm is particularly suited for 194 

the estimation of spatial variables such as soil properties (Booker and Woods, 2014; 195 

Hengl et al., 2018; Gagkas and Lilly, 2019; Stein et al., 2021). In the present work, a RF 196 

model is generated to estimate the values of the A parameter of the SMA model, 197 
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representing soil water holding capacity, with the properties of the 5x5km grid cells using 198 

Random Forests.  199 

 200 

To estimate the reliability of the method, the 5km x 5km grid cells covering the Iberian 201 

Peninsula have been split randomly into a training sample containing 70% of the cells 202 

and a testing sample with the 30% remaining cells. The random selection of the training 203 

and testing sets have been performed using a Latin Hypercube Sampling (McKay et al., 204 

1979) to ensure a homogeneous sampling over the Iberian Peninsula. Given that the RF 205 

trees cannot be interpreted directly, as for example the weights in a linear regression, we 206 

additionally implemented an out-of-bag predictor importance estimation by permutation 207 

(Loh and Shih, 1997), to measure how influential the predictor variables in the model are 208 

at predicting the response. The influence of a predictor increases with the value of this 209 

measure. If a predictor is influential in prediction, then permuting its values should affect 210 

the model error. If a predictor is not influential, then permuting its values should have little 211 

to no effect on the model error. 212 

 213 

3.3 Validation on the ability to detect dry soil moisture conditions 214 

 215 

To compare the efficiency of the two methods compared to estimate the A parameter of 216 

the SMA model, the SMA model was run using the two methods and all daily values of 217 

soil moisture below the 10th percentile were extracted, corresponding to dry soil 218 

conditions. Only the grid cells in the testing sample were considered for this validation. 219 

We computed different verification scores to assess the relative efficiency of the two 220 

methods to reproduce daily soil moisture below the 10th percentile using the ISBA 221 

simulated soil moisture as a benchmark; the Probability of Detection (POD), the False 222 

Alarm Ratio (FAR) and the Heidke Skill Score (HSS) summarizing the global efficiency to 223 

detect dry periods (Jolliffe and Stephenson, 2011). These scores are based on the 224 

contingency table between forecasts (or simulated values in the case of the present 225 

study) and observations (Table 1).  226 

 227 

POD is the probability of detection (equation 1), FAR is the number of false alarms per 228 

the total number of warnings or alarms (equation 2) and HSS is a skill score ranging from 229 

-∞ to 1 (equation 3), for categorical forecasts where the proportion of correct measure is 230 

scaled with the reference value from correct forecasts due to chance. 231 

 232 

𝑃𝑂𝐷 =  𝑎 / (𝑎 + 𝑐)                                                                                                 eq.1 233 

 234 

𝐹𝐴𝑅 =  𝑏 /(𝑎 + 𝑏)                                                                                                  eq.2 235 

 236 

𝐻𝑆𝑆 = 2 (𝑎𝑑 −  𝑏𝑐) / (𝑎 +  𝑏)(𝑏 +  𝑑)  +  (𝑎 + 𝑐)(𝑐 + 𝑑)                                        eq.3 237 
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 238 

 239 

4. Results 240 

 241 

4.1 Calibration of the SMA model 242 

 243 

The calibration results of the SMA model against SURFEX soil moisture provide very 244 

good model performance, with a mean Nash coefficient equal to 0.94, indicating its ability 245 

to reproduce the soil moisture dynamics as simulated by SURFEX. Nash values below 246 

0.5 are found for 1.21 % of grid cells (n= 273), only for areas located in the mountainous 247 

range affected by snow processes, above 1500 m.a.s.l. (Figure 1). This outcome is 248 

expected, since the SMA model does not include a snow-module it cannot reproduce 249 

snow dynamics in these areas. However, high-elevation areas with seasonal snow cover 250 

are not the area’s most at risk of soil moisture droughts for agricultural activities in Spain. 251 

The calibrated values of the A parameter of the SMA model ranges from 60 to 250 mm, 252 

depending on the location (Figure 3). There is no significant correlation between A and 253 

mean annual precipitation or the aridity index (P/PET). This highlights the interplays 254 

between soil properties and climate to explain the spatial variability on soil water holding 255 

capacity.  256 

 257 

4.2 Regional estimation of the A parameter 258 

 259 

The values of the calibrated A parameter are related to the properties of the 5x5km grid 260 

cells using Random Forests. First, an out-of-bag predictor importance estimation by 261 

permutation is applied to compute the overall performance of RF and estimate the relative 262 

influence of each predictor. When using the A estimates in cross-validation to run the 263 

SMA model, the loss of performance is very small, the decrease in Nash values in 264 

validation is on average equal -0.0019 (with a maximum decrease of -0.04).  This is due 265 

to the small sensitivity of the SMA model to the value of A, given that the error in the 266 

estimation of A is in the range of 10 mm (RMSE = 13.18 mm). This type of validation 267 

mimics the case when the estimation at one single location is required, yet since all the 268 

remaining points are used for the estimation, it makes the approach in that case very 269 

robust. The relative importance for each predictor is plotted on Figure 3, indicating that 270 

precipitation and evapotranspiration are two most important predictors, followed by 271 

altitude. On the contrary, the land cover attributes for each grid cell are the least important 272 

predictors, and removing them from the RF model does not significantly change the 273 

results. 274 

 275 

To estimate the robustness of the method, we applied a split-sample validation into a 276 

testing and a training sample. 70% of the grid cells (15636 data points) were selected for 277 
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training the RF model, and the remaining 30% (6701 data points) for testing. The results 278 

are presented for the testing set (Figure 4). The performance in terms of Nash for the 279 

SMA model with A estimated by Random Forests or soil map is very similar, with mean 280 

Nash equal to 0.86 (median = 0.89) with RF and 0.81 (median = 0.85) with soil maps. The 281 

Nash values in validation (testing set) are low, or even negative, only for mountainous 282 

ranges, as expected. Overall, the spatial patterns of the Nash coefficients obtained with 283 

RF or ESDB are very similar too. There are no significant relationships between model 284 

efficiency and the aridity index or the presence of irrigated areas, as identified in the 285 

ECOCLIMAP2 land cover database.  286 

 287 

4.3 Estimation of dry soil conditions 288 

 289 

A further validation is made for daily soil moisture below the 10th percentile corresponding 290 

to dry soil conditions. We computed the Probability of Detection (POD), the False Alarm 291 

Ratio (FAR) and the Heidke Skill Score (HSS) summarizing the global efficiency to detect 292 

dry periods. For both approaches to estimate A, the mean POD is very high, close to 293 

97%, while the FAR is close to 3%. But these average results hide some discrepancy in 294 

the different regions (Figure 5 and 6): the efficiency is the highest for the North-Western 295 

region, the wettest areas of Spain, while in the South and Central parts of Spain the 296 

performance is lower on average. For the wettest parts of the Iberian Peninsula, the POD 297 

remains higher than 94% and the FAR lower than 6% and it is the region where the main 298 

improvements with RF are observed. On average, the RF estimation method outperforms 299 

the approach based on ESDB (Figure 7), with more stable results in terms of HSS since 300 

all values obtained with RF are above 0.4 while with ESDB for the grid cells the HSS 301 

scores drops to values close to zero.  302 

 303 

5. Summary and conclusions 304 

 305 

In this study, a simple model allowing the monitoring of the soil saturation level was 306 

regionalized over the entire Iberian Peninsula, taking as a reference the soil moisture 307 

simulated by a high-resolution land surface model. Two different regionalization methods 308 

have been compared, either the direct estimation of soil water holding capacity from 309 

european soil maps or by Random Forests, using covariates such as altitude, 310 

temperature, precipitation, evapotranspiration and land cover. Results have shown that 311 

the estimation by Random Forest is more robust notably to estimate low soil moisture 312 

levels. Despite similar average performance between the two methods, the use of soil 313 

maps to set the water holding capacity reveals less stable results in some cases, most 314 

probably related to the uncertainties in the pedo-transfer functions used. While these 315 

pedo-transfer functions are process-based predictive functions of certain soil properties, 316 

Random Forest are not based on physical processes and are tailored to provide the best 317 
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estimates in a statistical sense. Therefore, they provide a valuable alternative in contexts 318 

where high-resolution soil maps are not available since they rely on a set of covariates 319 

that can be reliably estimated from global databases, such as satellite or reanalysis 320 

products (Funk et al., 2015; Hersbach et al., 2020; Muñoz Sabater, 2020).  321 

 322 

It should be noted that the results presented herein are highly dependent on the quality 323 

of land surface simulations, in the absence of dense monitoring networks of in situ soil 324 

moisture data, thus these results suffer from the same limitations as LSMs, notably, the 325 

lack of human processes (irrigation). However, new remote sensing irrigation estimates 326 

are being developed (Massari et al., 2021), as a consequence, once the RF model is 327 

trained, irrigation estimations could be added to the precipitation forcing data in order to 328 

include the human impacts on soil moisture estimations. The results show that this 329 

approach allows us to cheaply extend the value of high resolution LSM simulations to 330 

areas where no LSM is implemented (ie. north Africa), as long as the climate conditions 331 

belong to the range of values used to train the model, mostly in terms of precipitation and 332 

evapotranspiration ranges. Thus, the model train over the Iberian Peninsula could be 333 

applied to other similar areas such as North Africa, Italy or Greece. As a perspective, 334 

other simulations from countries where high resolution LSM simulations are available, 335 

such as France or the USA, could be added to the database in order to expand the 336 

coverage over different physiographic and climate contexts. Consequently, the benefits 337 

of LSM simulations of soil moisture could be expanded to other areas, provided that 338 

suitable forcing datasets are available. Furthermore, if public meteorological and 339 

hydrological organizations were to create soil moisture observation networks, cleverly 340 

designed to cover the most relevant climates of their countries, this approach could be 341 

used to train the model using these observations and then regionalize the results to the 342 

rest of the territory, thus, converting an in-situ observation dataset into a gridded dataset 343 

with a much greater spatial coverage. 344 

 345 
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TABLE 646 

 647 

Table 1: Contingency table of the comparison between forecasts and observations or 648 

any two analyses. The symbols a–d are the different numbers of cases observed to 649 

occur in each category. 650 

 651 

 Observations 

Forecast 1 0 

1 a (hit) b (false alarm) 

0 c (miss) d (correct rejection) 

 652 

FIGURES 653 

 654 

 655 

 656 

 Figure 1: Efficiency of the SMA model to reproduce soil moisture from SURFEX  657 

 658 

 659 
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 661 

Figure 2: Map of the calibrated values of the A parameter of the SMA model 662 

 663 

 664 

 665 

Figure 3: Relative importance of each predictor (Alt= altitude, P= precipitation, PET= 666 

potential evapotranspiration, T=temperature, LC=land cover classes) in the Random 667 

Forest method 668 
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 670 

 671 

 672 

Figure 4: Nash efficiency coefficient obtained for the testing set, with the A parameter of 673 

the SMA model estimated by RF (left) or ESDB (right) 674 

 675 

 676 

 677 

Figure 5: Validation results in terms of HSS, POD and FAR with A estimated with ESDB 678 
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 680 

Figure 6: same as figure 5 but with A estimated with RF 681 

 682 

 683 

Figure 7: Boxplot of the HSS obtained with RF or EU soil maps. The limits of the box 684 

represent the 25th and 75 percentiles, the line in the middle refers to the median, and 685 

the limits of the whiskers extend to the minimum and maximum values.  686 
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